

GEO. BRAY & COMPANY LIMITED

LEICESTER PLACE, LEEDS 2, ENGLAND London Office: 305-306 GRAND BUILDINGS, TRAFALGAR SQUARE, W.2.

USEFUL CONVERSION FACTORS

Aides a la Conversion du Système Britannique au Système Métrique

= 2.54 centimetres = 0.0254 metre 1 inch 1 cu. ft. = 28.3 litres = 0.0283 cu. metre 1 B.Th.U. = 0.252 Kilogram calorie 1 B.Th.U. per cu. ft. = 8.90 Kilogram calories per cu. metre

Flat Flame and Cylindrical

JETS For COAL GAS

Characteristics of Jets and Guide to their Selection

> Catalogue No. 205 1955

GEO. BRAY & COMPANY LIMITED

Leicester Place, Blackman Lane, Leeds 2, England Telephone LEEDS 20981 (9 lines) **Telegrams BRAY LEEDS 2** Established 1863

LONDON OFFICE

Telephone WHItehall 3033

305-306 GRAND BUILDINGS :: TRAFALGAR SQUARE, W.2. Telegrams GEBRAY LONDON

BURNER DEPARTMENT

For the details of other Bray Burners & Jets see the following publications

Incandescent Burners, M	lantles,	etc.				Catalogue	No.	194
Street Lighting (Incande	scent)					"	,,	195
Acetylene Burners			••••			"	,,	196
Jets & Incandescent Burr	ners for	Liquifi	ed Peti	roleum	Gases	,,	,,	210
Jets for Natural Gas						,,	,,	215
Liquid Spray Jets		••••			••••	"	,,	220

ELECTRICAL DEPARTMENT

Electric Heating Element	nts		 	 Catalogue	No.	C.41
Immersion Heaters for	use in	Water	 ••••	 ,,	,,	43
Electric Air Heaters	••••		 	 ,,	,,	44
Electric Oil Heaters			 	 ,,	,,	45

INSULATOR DEPARTMENT

General	 	•	 	 Catalogue No. P.4

BRAY BURNERS

The NAME BRAY has been associated with accurate and uniform gas jets since 1863, in the days when neat gas burners, consuming enriched gas, provided the main source of domestic and public illumination. With the substitution of heating value for illuminating power as the criterion of gas quality, the range of jets was considerably extended, with the addition of slotted and cylindrical orifices to the slit union and batswing types, so that, at the present time, in practically every field of domestic and industrial utilization, the Bray Jet, with its accurately calibrated porcelain tip, is accepted as a precise, reliable, reproducible and durable ignition source. Table 1 shows the wide range of uses to which Bray jets are subjected, space considerations precluding the inclusion of a list of appliance manufacturers, who rely upon their efficient and effective working.

We are proud that the name BRAY has always been regarded as synonymous with SERVICE in the Gas Industry, and the assistance of our technicians is at all times at the disposal of appliance manufacturers and gas engineers for the elucidation of their heating problems. It has been decided in the preparation of a new catalogue, to extend this service further, by the addition of technical information, tables and charts, which will not only strengthen the general conviction of the supremacy of Bray jets, but will also enable the designer of appliances to select with ease and confidence, from the large variety of types and sizes, the most suitable jet for his particular purpose.

It will be observed that the range of sizes of some of the more popular types has been considerably extended, while in other cases a specified range of sizes is not given, as the sizing and calibration of these are made in accordance with the customer's requirements.

TABLE OF CONTENTS

PAGE INTRODUCTION Neat Gas Jets, Slotted Ports and Porcelain Tips 4 Principal Uses of Bray Jets Table 1 5 Classification in order of Catalogue Numbers Table 2 6 Classification according to Type of Orifice Table 3 7 Jet Characteristics Table 4 8 SECTION I **Slotted Port Jets** "Geyser" Jets 9 (Flat Flame) "Industrial Jets" 10 Cold Gas Rates for above Table 5 10 "Regulator H" and "Economisers" "Miniature" Jets and Burner Heads 11 12 Cold Gas Rates for above ... Table 6 13 . . Port Spacings, etc. Table 7 . . 14 Nomogram for Slotted Port Jets 15 . . Batswing and Slit-Union Jets "Special" and "S.G. Burner" Jets "Market" and "Regulator L" Jets SECTION II (Flat Flame) 16 17 Cold Gas Rates for above Table 8 . . 18 . . SECTION III **Cylindrical Jets** "Side Hole" and "Cluster Flame" Jets 19 Cold Gas Rates for above Table 9 19 "Multi-Flame" and "Cross-Lighting" Jets 20 Hot Gas Rates and Flame Lengths for "Multi-Flame" and "Cross Lighting" Jets Tables 10, 11 and 12 21 "Cylindrical" Jets 22 Cold Gas Rates for "Pilot" and "Cylindrical" Jets Table 13 22 "Pilot" Jets 23 CLASSIFICATION OF BRAY JETS according to Jet Constants Table 14 24 HEAT-INPUTS of BRAY JETS 25 . . "Geyser" jets, etc. at Wobbe Numbers of 730 and 670 Table 15 26 "Geyser" jets, etc. at Wobbe Numbers of 625 and 560 Table 16 27 "Miniature" Jets at Wobbe Numbers of 730, 670, Table 17 625 and 560 28 CLEANING OF JETS and Jet Accessories, Taps and Box Spanners 29 THE FLOW OF GAS THROUGH SERVICE PIPES 30-31 NOMOGRAM for above 32 . . NOMOGRAM for Calculation of Heat Inputs from Slotted Port Jets 33 and 34 NOTE: The "REGULATOR H" Jets refer to heating jets with slotted ports and two-hole tips. The "REGULATOR L" Jets refer to luminous jets with batswing and slit union tips.

INTRODUCTION

BRAY COAL GAS JETS consist in the main of non-primary aerated or neat gas jets, wherein aeration of the flame is carried out entirely at the point of combustion. They incorporate Slotted Ports, described in Section I, Batswing and Slit Union Ports, in Section II and Cylindrical Ports in Section III. All are characterised by the incorporation of tips of ceramic material (porcelain). It is proposed in these introductory remarks to deal in turn with (1) Neat Gas Jets, (2) Slotted Ports, and (3) Porcelain Tips.

(1) NEAT GAS JETS

For a given gas consumption non-primary aerated flames cover a wider area than Bunsen flames which, being more localised, have a higher flame temperature. This does not result in a higher efficiency: from one cubic foot of gas of a calorific value of 500 B.Th.U. per hour only 500 B.Th.U. are available for heating whether primary aeration is resorted to or not, and whereas in certain specialised operations it may be of advantage to provide the heat in small flames of high temperature, in many cases there is a definite advantage in providing larger flames of lower temperature. This often results in a higher efficiency of heat transfer.

In addition, the neat gas burners have several advantages over the Bunsen burner, as summarised below:—

- (1) Absence of noise.
- (2) Fixed dimensioned orifices with standardised gas consumptions.
- (3) Absence of adjusting devices.
- (4) Abolition of back-firing troubles.
- (5) Greatly reduced sensitiveness to changes in the quality of the gas.
- (6) Easier and less costly maintenance.
- (7) Simplified testing of appliances.
- (8) Simplicity of design with smaller gas connections, resulting in considerable economies in appliance construction.

(2) SLOTTED PORTS

Bray "Geyser", "Industrial" and "Miniature" Jets incorporate porcelain tips with orifices specially shaped to produce fan-shaped flames of large surface area. The method of operation of these ports is as follows:—

Opposite sides of the stream of gas at the two short dimensions of the rectangular port opening are diverted towards each other as the opening is approached by the gas stream. Meanwhile, the middle portion of the stream tends to pass straight through the centre area of the port opening. The streams impinge on each other and the entire gas stream diverges as it issues from the port. This results in a flattened cross-section which is at right angles to the long dimension of the port. The outer envelopes of these flames consist of completely combusted gas, so that, in a multiple burner, these may be permitted to overlap without detriment to the combustion, and thus ensure lighting across. In a bar burner the main axis of the flames may be in alignment with the burner, or, where it is desirable to reduce the distance between jets, these may be adjusted so that the flames are at an angle to the burner axis, the versatility of the jets in this connection being an important characteristic of slotted ports.

Further characteristics of the slotted ports should be noted. These are dealt with under the headings of (a) Flame Stability, (b) Noise of Operation, (c) Turndown, (d) Combustion.

(a) Flame Stability. Lack of flame stability may be defined as that condition where the flames either abruptly change shape to an irregular form, or lift and blow away from the port. This occurs at high gas pressures, so that it is advisable with slotted port jets, to operate at gas pressures of from 1.0 to 2.5 inches water gauge. For example, with a jet consuming 3,500 B.Th.U. per hour, and for high calorific value gas, the limit of flame stability has been found to occur at a gas pressure of 4.6° w.g. Ports of smaller area can be operated at higher gas pressures before the limit of flame stability is reached.

(b) Noise of Operation. The flames from slotted ports are noiseless until the limit of flame stability is reached.

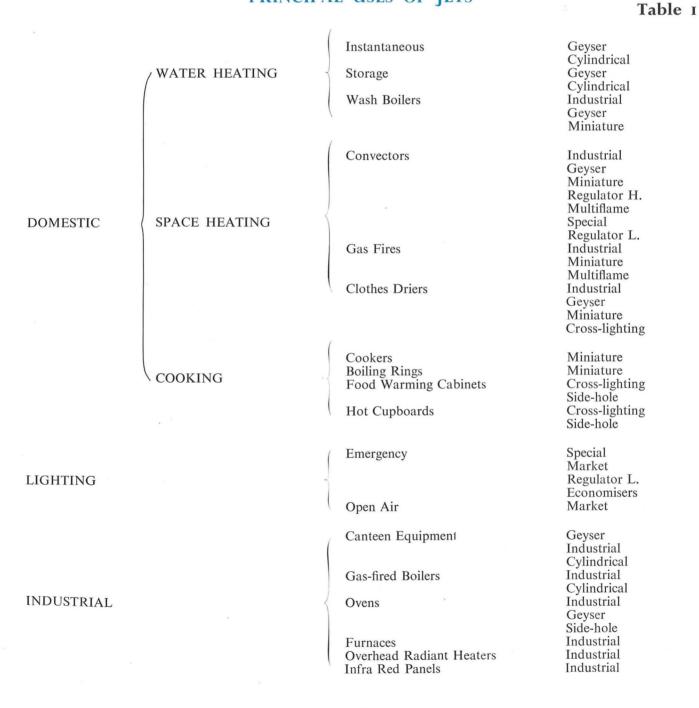
(c) **Turndown.** The gas supply to the slotted port burners may be reduced to as much as 1/130th of the normal consumption before extinction.

(d) **Combustion.** Within the limits of stable operation combustion is entirely satisfactory, even in the yellow tip regions, provided there is no contact with cold surfaces.

(3) PORCELAIN TIPS

The above flame characteristics pre-suppose that the slotted ports are of correct design, with smooth walls and freedom from burrs. Careful selection of materials of construction, close tolerances in manufacture and meticulous inspection are therefore necessary to ensure optimum working of the jets. In the case of the Bray jet, the porcelain tip is incorporated, prepared from materials obtained from all over the world, the slots produced by methods which ensure uniformity, and each jet is subjected to rigorous tests before leaving the Works. It is for these reasons that the Bray jet is accepted throughout the Gas Industry as a precise, reliable, reproducible and durable ignition source.

The only alternative to porcelain would be corrosionresisting metal such as stainless steel, with which great difficulties are experienced in producing ports of the required small size, and configuration, with the resultant precision machining to remove burrs and ensure perfectly smooth port walls.


INTRODUCTION (continued)

burner head temperature, due to lower rates of heat transfer from the flames to the burner manifold, compared with metallic tips. The excessive port temperatures with the latter may result in an undesirable cutback of heat input rate during the burner warm-up period.

A major advantage of porcelain tips is also the low Whereas preheating of the gas to temperatures between 400°F and 500°F may be desirable, temperatures above this may cause cracking of the gas. Tests have shown that with a multiple burner, fitted with Bray jets, and installed inside a combustion chamber, the temperatures attained were between 350°F and 475°F.

> As a point of interest it should be noted that 2 or 3 different sizes of jet can be used to give the same B.T.U. output simply by adjusting the operating pressure.

PRINCIPAL USES OF JETS

Table 2

Classification in order of Catalogue Numbers

Catalogue Number	Name of Jet, etc.	Type of Orifice	Thread Size	Nominal Gas Rates cu. ft. per hr.
105-106	Mushroom Burner Heads			4.0-38.0
115 118 188 191 201	Miniature Miniature Side Hole Multi-flame Special	Slotted Slotted Cylindrical Cylindrical Two-hole	1/26 T.P.I. 1/27 36 T.P.I. But. 27 T.P.I. But. 27 T.P.I. But. 27 T.P.I. But. 27 T.P.I.	$ \begin{array}{c} 0.5-5.0\\ 0.5-5.0\\ \hline 3.0-12.0\\ 2.5-11.0 \end{array} $
202 207 208 209 210	Special Regulator Regulator Regulator Economiser	Slit Union Slotted Batswing Slit Union Slotted	But. 27 T.P.I. But. 27 T.P.I. But. 27 T.P.I. But. 27 T.P.I. But. 27 T.P.I.	$ \begin{array}{c} 2 \cdot 0 - 13 \cdot 0 \\ 1 \cdot 0 - 10 \cdot 0 \\ 3 \cdot 0 - 12 \cdot 0 \\ 3 \cdot 0 - 12 \cdot 0 \end{array} $
211 213 217 219 221	Economiser Cylindrical Jet Geyser Market Special	Batswing Cylindrical Slotted Slit Union Batswing	But. 27 T.P.I. But. 27 T.P.I. But. 27 T.P.I. But. 27 T.P.I.	$\begin{array}{c} 0.25 - 3.5 \\ 1.0 - 13.0 \\ 13.5 - 15.0 \\ 3.0 - 12.5 \end{array}$
224 226 231 233 234	Economiser Market S.G. Burner Pilot Pilot	Slit Union Batswing Batswing Cylindrical Cylindrical	But. 27 T.P.I. But. 27 T.P.I. ³ / ₁₆ " 24 T.P.I. I B.A. Female	$ \begin{array}{r} 15.0 - 16.5 \\ \hline 0.25 - 4.0 \\ 0.25 - 4.0 \end{array} $
235 236 237 238 239	Industrial Pilot Cylindrical Jet Pilot Pilot	Slotted Cylindrical Cylindrical Cylindrical Cylindrical	But. 27 T.P.I. $\frac{3}{16}$ " 24 T.P.I. 2 B.A. Male 1 B.A. Female ·144 36 T.P.I.	$ \begin{array}{c} 1 \cdot 0 - 13 \cdot 0 \\ 0 \cdot 25 - 4 \cdot 0 \\ \hline 0 \cdot 25 - 4 \cdot 0 \\ \hline \end{array} $
241 242 254 262 263	Cylindrical Jet Cylindrical Jet Cluster Flame Regulator Geyser	Cylindrical Cylindrical Cylindrical Two-hole Two-hole	$\frac{3}{16}$ " 36 T.P.I. $\frac{3}{16}$ " 36 T.P.I. But. 27 T.P.I. But. 27 T.P.I. But. 27 T.P.I. But. 27 T.P.I.	$ \begin{array}{c} 0.25-3.5 \\$
266 433 434 437 439	Industrial Pilot Pilot Pilot Pilot	Slotted Cylindrical Cylindrical Cylindrical Cylindrical	$\frac{\frac{1}{8}}{\frac{1}{16}} B.S.P. Taper \frac{3}{16} 24 T.P.I. \frac{3}{16} 24 T.P.I. F. \frac{3}{16} 24 T.P.I. F. \frac{3}{16} 40 T.P.I. 18$	$ \begin{array}{c} 1 \cdot 0 - 10 \cdot 0 \\ 0 \cdot 25 - 4 \cdot 0 \\ 0 \cdot 25 - 4 \cdot 0 \\ $
450 465 466 467 470	Pilot Cross Lighting Cross Lighting Cylindrical Jet Geyser	Cylindrical Cylindrical Cylindrical Cylindrical Slotted	·144 36 T.P.I. But. 27 T.P.I. But. 27 T.P.I. $\frac{1}{8}$ " B.S.P. Taper But. 27 T.P.I.	$ \frac{1 \cdot 0 - 6 \cdot 0}{1 \cdot 0 - 6 \cdot 0} \\ 0 \cdot 25 - 3 \cdot 5 \\ 1 \cdot 0 - 10 \cdot 0 $
471 481 482 485 486	Geyser Cross Lighting Cross Lighting Multi-flame Industrial	Slotted Cylindrical Cylindrical Cylindrical Slotted	But. 27 T.P.I. But. 27 T.P.I. ¹ / ₈ " B.S.P. Taper But. 27 T.P.I. Whit. 28 T.P.I.	$ \frac{1 \cdot 0 - 10 \cdot 0}{1 \cdot 0 - 6 \cdot 0} \\ \frac{1 \cdot 0 - 6 \cdot 0}{3 \cdot 0 - 12 \cdot 0} \\ \frac{1 \cdot 0 - 10 \cdot 0_{f}}{1 \cdot 0 - 10 \cdot 0_{f}} $
487 491–498 531–538 516	Industrial Side Hole Side Hole Cluster	Slotted Cylindrical Cylindrical Cylindrical	$\frac{1}{8}$ " B.S.P. Taper But. 27 T.P.I. $\frac{1}{8}$ " B.S.P. Taper But. 27 T.P.I.	$ \begin{array}{r} 1 \cdot 0 - 10 \cdot 0 \\ 2 \cdot 0 - 15 \cdot 0 \\ 2 \cdot 0 - 15 \cdot 0 \\ $

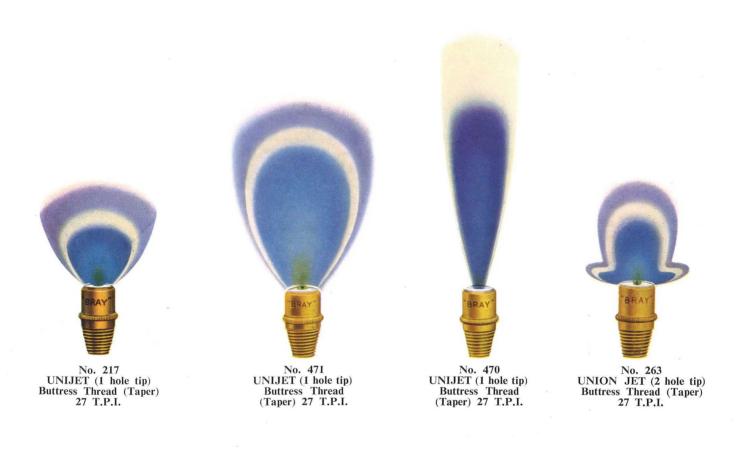
	C1-44-1	True Hale		Cylindrical		Slit Inion	Deterio
	Slotted	Two Hole	One hole	Two holes	Multi-holes	Slit Union	Batswing
GEYSER	217 470 471	263					
INDUSTRIAL	235 266 486 487					0.	
REGULATOR H.	207	262					
MINIATURE	115 118				-		
SPECIAL		201					
CYLINDRICAL			213 467 241 237 242				
SIDE HOLE			491 531	492 532	493/8 533/8 188		
CROSS LIGHTING				465 466	481 482		
CLUSTER FLAME					254 516		
MULTI-FLAME					191 485		
PILOT			233 234 236 238 433 434 439 239 450	437			
SPECIAL					-	202	221
S. G. BURNER							231
MARKET						219	226
REGULATOR L.						209	208
ECONOMISER	210					224	211

Classification According to Type of Orifice

Table 4

Jet Characteristics

GEYSER: Flat Flame, Slotted Orifice	
Buttress Thread	
Unijet: one hole tip broad flame medium flame 471	217
narrow flame 470	
Union Jet: two hole tip	263
INDUSTRIAL: Flat Flame, Slotted Orifice	
Brass Socket	All Porcelain
Buttress thread 235 $\frac{1}{8}$ " B.S.P. Taper 266	486 487
$\frac{1}{8}$ D.3.1. Taper 200	
MINIATURE: Flat Flame, Slotted Orifice	
$\frac{1}{4}$ " diam. 26 T.P.I. Thread	115
$\frac{1}{4}$ diam. 26 T.P.I. Thread $\frac{1}{4}$ diam. 36 T.P.I. Thread	115
4 dame so firm finoad	110
REGULATOR: Heating, Flat Flame	
Slotted Orifice: Buttress thread	
Unijet : one hole tip	207
Union Jet: two hole tip	262
ECONOMISERS for above	
Unijet : one hole tip	210
Batswing	211
Slit Union	224
CROSS LIGHTING: Cylindrical Jet	
Buttress thread	
2 holes: Horizontal flames	465
Inclined flames	466
Multi-holes : 2 main holes horizontal	481
Buttress Thread ¹ / ₈ " B.S.P. Taper thread	481
8 Diolit Paper uneau	102
SIDE HOLE: Cylindrical 1-8 holes	
Horizontal Flames:	
Brass socket: Buttress thread	491-498
All Porcelain : $\frac{1}{8}$ " B.S.P. Taper	531-538
Inclined Flames: Buttress thread	188
MULTI-FLAME: Radial Flames	
Buttress Thread	
9 holes all equal	191
7 holes: 2 at bottom of large diameter	485


CYLINDRICAL: One Hole Vertical Fla	imes
Non-atmospheric: Buttress thread	213
$\frac{1}{8}^{''}$ B.S.P. Taper $\frac{3}{16}^{''}$ 36 T.P.I.	467 241
Atmospheric: 2 B.A. $\frac{3}{16}$ % 36 T.P.I.	237 242
CLUSTER FLAME:	
Buttress thread	
Atmospheric Non-atmospheric	254 516
SPECIAL: Flat Flame	
Buttress Thread	
Union Jet: 2 hole tip Slit Union	201 202
Batswing	202
S.G. BURNER: Flat Flame	
Buttress Thread	231
	231
MARKET: Flat Flame	
Buttress Thread	
Slit Union	219
Batswing	226
REGULATOR (Lighting): Flat Flame	
Buttress Thread	
Batswing Slit Union	208 209
PILOT: Cylindrical Jet Flat Topped Protruding Porcelain Tip	Rounded Porcelain Tip
$\frac{3}{16}$ " 24 T.P.I. Male 233	236
1 B.A. Female 234 $\frac{3}{16}$ 24 T.P.I. Male	238
with one vert. and 1 horizontal flame 437	
Fitted with regulating screws	
$\frac{1}{3}$ " x 40 T.P.I. Male 439 $\frac{3}{4}$ " 24 T.P.I. Male 433	
$\frac{1}{8}$ x 40 T.P.I. Male 439 $\frac{3}{16}$ 24 T.P.I. Male 433 $\frac{3}{16}$ 24 T.P.I. Female 434	
Atmospheric	
·144 36 T.P.I. 239	
Do. with metal windshield 450	

(FLAT FLAME) SLOTTED PORT JETS GEYSER

This well-known type of burner is sturdily constructed, with a brass socket, fitted with brass gauze, and a porcelain tip which may be slotted, in the "Unijet" types, Nos. 217, 470 and 471, with a central orifice, or, in the "Union" type, No. 263, with twin ports, inclined towards each other at an angle of 45° from the vertical, so that the flames impinge one upon the other. The side flames, projecting from the base of the main flame, are characteristic of the Union two hole tip.

The three "Unijet" types on the other hand, are designed for the normal broad flame, No. 217, a medium flame No. 471, and a narrow flame, No. 470.

The "GEYSER" jet is widely used in water-heating appliances of all kinds, instantaneous and storage, for canteen equipment, ovens, washboilers, convectors, clothes driers, etc. etc.

SECTION I

(FLAT FLAME) SLOTTED PORT JETS INDUSTRIAL JETS

The "Industrial Jet" as the name implies, was originally intended for incorporation in industrial equipment, and, in view of the more severe conditions under which it is required to operate, is of more robust construction than the "Geyser" jet. For normal applications it is constructed of a heavier brass section socket with brass gauze and a thicker porcelain tip, but for applications where the high prevailing temperatures preclude the use of a brass socket, the entire jet is constructed of porcelain. All patterns of "Industrial Jet" are fitted with unijet, one-hole tips.

UNIJET (1 hole tip) Buttress Thread (Taper)

27 T.P.I.

 $\frac{1}{8}$ " B.S.P. Thread (Taper)

No. 486 UNIJET (1 hole tip) Whit. Thread (Taper) 28 T.P.I.

No. 487 UNIJET (1 hole tip) ^{1/8} B.S.P. Thread (Taper)

In addition to its many industrial uses, in canteen equipment, gas-fired boilers, ovens and furnaces, the "Industrial Jet" is extensively used in most types of domestic equipment, including wash boilers, overhead radiators, convectors, gas fires, clothes driers etc.

Table 5

GEYSER JETS INDUSTRIAL JETS REGULATOR JETS H

COLD GAS RATES Cubic feet per hour

(The \times in the left hand columns indicates the sizes in which each particular burner is made)

'GEYSER'	'INDUSTR AL	'REGULATOR	Specific Gravity Pressure ins. w.g.	0·45 1·0	0·45 1·5	0·45 2·0	0·45 2·5	0·50 1·0	0·50 1·5	0·50 2·0	0·50 2·5	0·55 1·0	0·55 1·5	0·55 2·0	0·55 2·5
			JET No.												
\times	\times		0000	0.51	0.62	0.72	0.79	0.49	0.59	0.67	0.76	0.46	0.56	0.65	0.73
\times	\times	\times	000	0.97	1.19	1.38	1.54	0.93	1.14	1.31	1.47	0.88	1.08	1.25	1.40
\times	\times	\times	00	1.88	2.30	2.66	2.97	1.79	2.19	2.53	2.83	1.71	2.09	2.41	2.70
\times	\times	×	0	2.78	3.40	3.93	4.39	2.64	3.24	3.74	4.18	2.52	3.09	3.56	3.98
	\times		$\frac{1}{2}$	3.22	3.94	4.54	5.09	3.07	3.75	4.34	4.85	2.92	3.58	4.13	4.62
\times	×	\times	$1 \\ 1\frac{1}{2}$	3·67 4·11	4·49 5·04	$5.19 \\ 5.82$	$5.80 \\ 6.50$	3·49 3·92	4·28 4·80	4∙94 5∙54	5·52 6·19	3·33 3·73	4·08 4·57	4·71 5·28	$5.26 \\ 5.90$
X	$\times \times$	X	$2^{1\overline{2}}$	4.56	5.58	6.45	7.21	4.34	5.31	6.14	6.86	4.14	5.07	5.85	6.54
, ,	×		$2\frac{1}{2}$	5.00	6.12	7:07	7.90	4.76	5.82	6.73	7.42	4.53	5.55	6.41	7.17
\times	×	×	$-\frac{1}{3}^{2}$	5.43	6.66	7.69	8.59	5.17	6.34	7.32	8.18	4.93	6.04	6.98	7.80
	\times ·		$3\frac{1}{2}$	5.86	7.18	8.29	9.27	5.58	6.84	7.90	8.83	5.32	6.52	7.53	8.42
\times	\times	\times	4	6.30	7.71	8.91	9.96	6.00	7.34	8.48	9.48	5.72	7.00	8.08	9.04
	\times		$4\frac{1}{2}$	6.72	8.23	9.51	10.6	6.40	7.84	9.05	10.1	6.10	7.47	8.63	9.65
\times	\times	\times	5	7.15	8.76	10.1	11.3	6.81	8.34	9.62	10.8	6.49	7.95	9.18	10.3
\times	\times	\times	6	7.99	9.78	11.3	12.6	7.61	9.31	10.8	12.0	7.25	8.88	10.3	11.5
\times	\times	\times	7	8.82	10.8	12.5	13.9	8.39	10.3	11.9	13.3	8.00	9.80	11.3	12.6
\times	\times		- 8	9.66	11.8	13.7	15.3	9.20	11.3	13.0	14.5	8.77	10.7	12.4	13.9
\times	\times		9	10.5	12.9	14.9	16.6	10.0	12.2	14.1	15.8	9.53	11.7	13.5	15.1
	\times		10	11.3	13.9	16.0	17.9	10.8	13.2	15.3	17.1	10.3	12.6	14.6	16.3

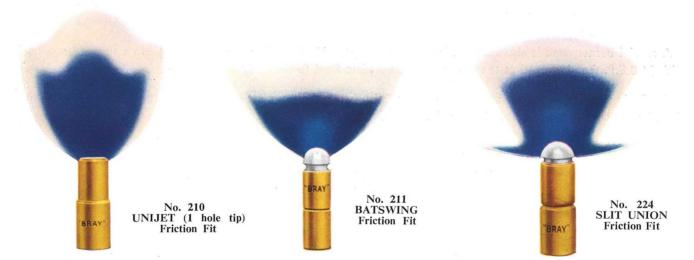
Example of the Use of Table 5

The size of "Industrial Jets" is required for a bar burner to be fitted with 8 jets. The hot gas rate is 30 cubic feet per hour. The consumption reduction has been determined for similar conditions and found to be 15%. The cold gas rate will therefore be $35\cdot3$ cu. ft. per hour, and the cold gas rate per jet $35\cdot3/8=4\cdot4$ cu. ft. per hour. The burner is to operate at a pressure of $1\cdot5$ ins. w.g., with gas of a specific gravity of 0.50.

From the Table, the No. 1 jet will give 4.28 cu. ft. per hour under these conditions, and will be selected.

(FLAT FLAME) SLOTTED PORT JETS REGULATOR H

The "Regulator" H jet, consisting of brass socket fitted with brass gauze and porcelain tip, is similar to the "Geyser" jet, but of lighter construction. It is of two types, the Unijet, one hole tip, No. 207, and the Union jet, two hole tip, No. 262.



No. 207 UNIJET (1 hole tip) Buttress Thread (Taper) 27 T.P.I. No. 262 UNION JET (2 hole tip) Buttress Thread (Taper) 27 T.P.I.

In one of the applications of this jet, it is fitted at the centre of a bar burner, with "Miniature" jets spaced on each side, for use in convectors. The "Regulator" H jet is located behind the observation window and lighting port, so that it provides the ignition point, and by its greater luminosity, shows if the burner is alight. Luminosity is increased still further by one or other of the "Economisers" described below.

ECONOMISER

The "Economiser" is designed to work in conjunction with the "Regulator" jet, and consists of a brass socket, with brass gauze, to slide over the top of the "Regulator" jet and provide a friction fit, and porcelain tips of three patterns, the Unijet No. 210, the Batswing, No. 211, and the Slit Union, No. 224.

In combination with the "Regulator" jet, the economisers, which increase flame luminosity for the same gas consumption, are often used for emergency lighting.

The cold gas rates for the "Geyser", "Industrial Jet" and "Regulator" H jets for various specific gravities and gas pressures, are shown on the preceding page. Cold gas rates will in all cases be higher than the required hot rates, the consumption reduction on warming-up differing according to the location of the burner. The percentage consumption reduction for a particular application can only be found by experiment.

GEYSER JETS INDUSTRIAL JETS REGULATOR JETS H.

-								
	Densite Pression	0,45	0,45	0,45	0,45	0,50	0,50	0,50
	mm.	25	38	50	64	25	38	50
	No du Bec 0000 000 00 0 1 1 1 2 2 2 2 2 2	25 14 27 53 79 91 104 116 129 141	18 34 65 96 111 127 142 158 173	20 39 75 111 128 147 165 183 200	22 44 84 124 144 164 184 204 224	25 14 26 51 75 87 99 111 122 135	38 17 32 62 92 106 121 136 150 165	19 37 72 106 123 140 157 173 190
	3 3 4 4 5 6 7 8 9 10	154 166 178 190 202 226 250 273 297 320	188 203 218 233 248 277 306 334 365 393	218 235 252 269 286 320 354 387 422 453	243 262 282 300 320 357 393 432 470 506	146 158 170 181 193 215 237 260 283 306	179 193 208 222 236 263 291 319 345 374	207 224 240 256 272 306 337 367 399 433

CONSOMMATIONS DE GAZ (STAT FROID)

litres/hr.

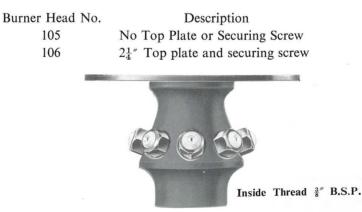
	64	21 40 76 113 131 149 167 185 203 221 238 256
	50	18 35 68 101 117 133 149 165 181 198 213 229
	38	16 31 59 87 101 115 129 143 157 171 184 198
	25	13 25 48 71 83 94 106 117 128 139 151
0,50	64	22 42 80 118 137 156 175 194 210 231 250 268

(FLAT FLAME) SLOTTED PORT JETS MINIATURE

These small jets $(\frac{3}{8})''$ overall height) consist of a hexagonal brass socket, with slotted port porcelain tip.

Their many applications include wash boilers, gas fires, clothes driers, cookers and boiling rings, etc.

Incorporated in burner bars they are extensively used for convector heaters, with or without a central "Regulator" burner.


No. 115 Outside Thread $\frac{1}{4}$ " dia. 26 T.P.I. No. 118 Outside Thread $\frac{1}{4}$ " dia. 36 T.P.I. UNIJET (1 hole tip)

BURNER HEADS

FOR GAS COOKERS AND PORTABLE BOILING RINGS

A special burner head is also supplied incorporating eight "Miniature" Jets set at an angle in a turned brass body with $\frac{3}{8}$ " B.S.P. female thread at the base and circular plate fixed to the body with a screw.

The body and securing screw are in dull chrome finish, while the top plate is of 16 gauge stainless steel, self colour. Each burner head is tested before leaving the Works,

Table 6

MINIATURE JETS

COLD GAS RA Cubic feet per hour

1.1												-	
]	Specific Gravity Pressure	 0.45	0.45	0.45	0.45	0.50	0.50	0.50	0.50	0.55	0.55	0.55	0.55
	ins. w.g.	 1.0	1.5	2.0	2.5	$1 \cdot 0$	1.5	2.0	2.5	$1 \cdot 0$	1.5	2.0	2.5
Co	de Letter												
	Z	 0.25	0.31	0.36	0.40	0.24	0.29	0.34	0.38	0.23	0.28	0.32	0.36
	Y	 0.49	0.60	0.70	0.78	0.47	0.57	0.66	0.73	0.45	0.55	0.63	0.71
	X	 0.73	0.88	1.03	1.15	0.69	0.85	0.98	1.09	0.66	0.81	0.93	1.04
	W	 0.96	1.17	1.35	1.51	0.91	1.12	1.29	1.44	0.87	1.06	1.23	1.37
	V	 1.18	1.45	1.67	1.87	1.13	1.38	1.59	1.78	1.07	1.32	1.52	1.70
	U	 1.41	1.72	1.99	2.23	1.34	1.64	1.89	2.12	1.28	1.56	1.80	2.02
	Т	 1.63	2.00	2.30	2.58	1.55	1.90	2.19	2.45	1.48	1.81	2.09	2.34
	S	 1.85	2.27	2.62	2.93	1.76	2.16	2.49	2.79	1.68	2.06	2.38	2.66
	R	 2.08	2.54	2.94	3.28	1.98	2.42	2.80	3.13	1.88	2.31	2.67	2.98
	Q	 2.30	2.82	3.25	3.63	2.19	2.68	3.09	3.40	2.09	2.56	2.95	3.30
	Р	 2.52	3.09	3.56	3.98	2.40	2.94	3.39	3.79	2.29	2.80	3.23	3.62
	Ν	 2.74	3.36	3.88	4.34	2.61	3.20	3.69	4.13	2.49	3.05	3.52	3.94
	J	 3.63	4.46	5.13	5.74	3.46	4.23	4.89	5.43	3.29	4.04	4.66	5.21
	E	 4.51	5.52	6.37	7.13	4.29	5.25	6.07	6.78	4.09	5.01	5.78	6.47

BURNER HEADS with 8 Miniature Jets

COLD GAS RATES Cubic feet per hour

Specific Gravity Pressure	 0.45	0.45	0.45	0.45	0.50	0.50	0.50	0.50	0.55	0.55	0.55	0.55
ins. w.g.	 1.0	1.5	2.0	2.5	1.0	1.5	2.0	2.5	1.0	1.5	2.0	2.5
Code Letter						0	a.	8		2		.0
Z	 2.01	2.46	2.84	3.18	1.91	2.34	2.70	3.02	1.82	2.23	2.58	2.89
Y	 3.94	4.82	5.57	6.22	3.75	4.59	5.30	5.85	3.58	4.38	5.06	5.66
Х	 5.82	7.05	8.23	9.20	5.54	6.78	7.83	8.76	5.28	6.46	7.47	8.35
W	 7.66	9.38	10.84	12.12	7.30	8.94	10.32	11.54	6.96	8.52	9.84	11.00
V	 9.47	11.60	13.39	14.97	9.02	11.04	12.74	14.26	8.59	10.54	12.15	13.59
U	 11.26	13.79	15.92	17.80	10.72	13.13	15.16	16.95	10.22	12.52	14.46	16.16
Т	 13.04	15.97	18.44	20.62	12.41	15.20	17.55	19.62	11.83	14.49	16.74	18.71
S	 14.82	18.15	20.96	23.43	14.11	17.28	19.95	22.31	13.46	16.47	19.02	21.27
R	 16.62	20.34	23.50	26.26	15.82	19.37	22.36	25.00	15.96	18.46	21.32	23.84
Q	 18.39	22.52	26.01	29.07	17.50	21.44	24.75	27.17	16.69	20.44	23.60	26.39
Р	 20.15	24.68	28.50	31.86	19.18	23.50	27.13	30.34	18.29	22.40	25.87	28.92
Ν	 21.94	26.87	31.03	24.70	22.89	25.58	29.54	33.03	19.92	24.39	28.17	31.49
J	 29.04	35.57	41.06	45.91	27.64	33.86	39.10	43.44	26.36	32.28	37.27	41.67
E	 36.06	44.16	50.99	57.02	34.33	42.04	48.54	54.27	32.73	40.08	46.28	51.74

Will you please note that only sizes up to and including Code Letter "S" of our No. 118 Miniature Jet are recommended for use in the 105 and 106 Burner Head.

Flame Dimensions of Slotted Port Jets

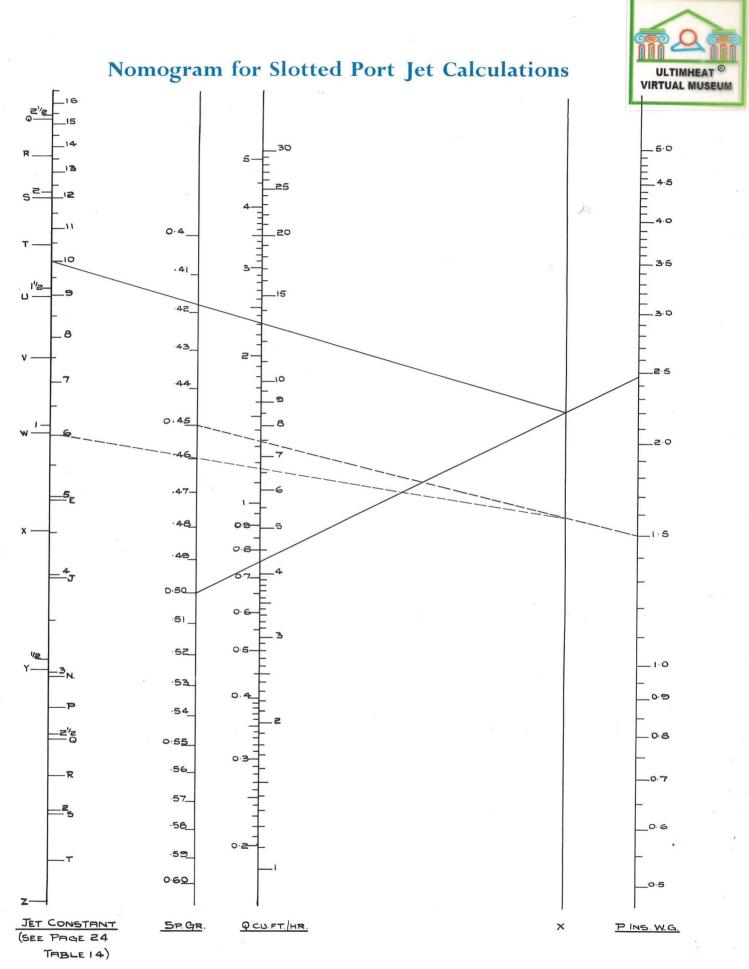
Table 7 gives the flame dimensions for a number of slotted ports, as fitted to Geyser, Industrial and Miniature Burner Jets, with gas of 530 B.Th.U. calorific value, and at a pressure of $1\frac{1}{2}$ w.g.

Characteristic flames shapes are shown in the photographs illustrating the various types of jets. It should be mentioned that the photographic representations are full size, but the flame representation is for one particular size of jet, in general, the No. 2 size jet.

L. (NL-	Flame Di	imensions	Thickness
Jet No.	Height ins.	Spread ins.	ins.
Y	<u>5</u> 8	<u>3</u> 4	$\frac{1}{8}$
000, W	$\frac{3}{4}$	$\frac{3}{4}$	$\frac{1}{8}$
U	$\frac{7}{8}$	$\frac{7}{8}$	$\frac{1}{8}$
Т	1	$\frac{7}{8}$	$\frac{1}{8}$
00, S	118	118	$\frac{1}{8}$
R	11	$1\frac{1}{4}$	$\frac{1}{8}$
0, N	11	$1\frac{1}{2}$	$\frac{1}{8}$
1, J	$1\frac{3}{4}$	$1\frac{3}{4}$	$\frac{1}{8}$
2, E	2 1 /8	2 1 /8	$\frac{3}{16}$
3	$2\frac{1}{4}$	238	$\frac{3}{16}$
4	$2\frac{1}{2}$	$2\frac{1}{2}$	$\frac{3}{16}$

 Table 7
 Flame Dimensions of Slotted Ports

Nomogram for Slotted Port Jet Calculations

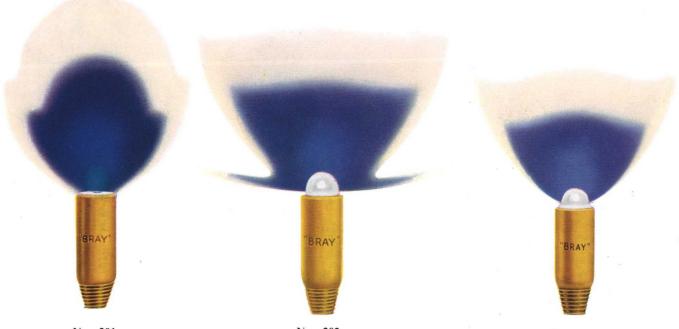

The nomogram shown overleaf has been designed for the determination of jet sizes and of gas inputs with different jets for gases of different specific gravities and operating at different pressures. As the specific gravity range extends from 0.40 to 0.60 and is calibrated in intervals of 0.01, while the pressure range extends from 0.5 to 5.0 inches water gauge, the nomogram supplements the cold gas rate tables, enabling determinations to be made at intermediate gravity and pressure values.

The nomogram consists of five scales, the first being calibrated in jet sizes, in Jet Constants (page 27, Table 14) for the larger slotted port jets, and in Code letters for the Miniature jets. The second scale is calibrated in specific gravities, and the third in gas consumptions, cubic feet per hour. The fourth scale is ungraduated, while the fifth is calibrated in gas pressures from 0.5 to 5.0 ins. w.g.

It will be observed that the first and third scales are graduated on both sides. The left hand scale of the first should be used with the left hand scale of the third, and the right hand scale with the corresponding right hand scale.

The method of operation is shown in the two examples. To determine the gas consumption for a particular jet size, a straight line is first drawn from the specific gravity on the second scale to the gas pressure on the right hand scale. From the point of intersection of the ungraduated scale a second line is drawn to the jet size, intersecting the Q scale at the required consumption. Alternatively to determine the jet size for a particular gas consumption the second line is drawn from the point of intersection, through the gas consumption on the Q scale and extended to intersect the Jet Constant scale at the appropriate jet size.

The examples show that with gas at a pressure of $2.5^{"}$ water gauge and specific gravity 0.50, a jet with Jet Constant 10 will pass 13.2 cubic feet of gas per hour (Unbroken Lines). Again, with gas of a specific gravity of 0.45 and operating at a pressure of 1.5 inches water gauge, a Size W Miniature jet will pass 1.18 cubic feet per hour (Broken Lines).



(FLAT FLAME) BATSWING & SLIT UNION JETS **SPECIAL and S. G. BURNER JETS**

The "Special" and "S.G." burner jets are designed to give luminous flames, and while originally supplied for lighting purposes, are particularly suitable for convector heaters, where illumination is required through a front panel, to effect a pleasing appearance.

They are constructed of a brass socket fitted with gauze and incorporate a porcelain gas regulator. The porcelain tips may consist of Union jets (2 hole tip) as in No. 201, Slit Unions as in No. 202, or Batswing jets as in No. 221 and the "S.G." Burner No. 231.

The "Special" jets have each a specified range of sizes, but the "S.G." Burner jet, a very popular type for luminous convectors, is calibrated according to customers' requirements.

No. 201 UNION JET (2 hole tip) Buttress Thread (Taper) 27 T.P.I.

No. 202 SLIT UNION Buttress Thread (Taper) 27 T.P.I.

No. 221 BATSWING Buttress Thread (Taper) 27 T.P.I

No. 231

The principal uses of these jets are for emergency lighting in public buildings, cinemas and gas works, and for heating appliances where light in addition to heat is required.

SECTION II

ULTIMHEAT® VIRTUAL MUSEUM

(FLAT FLAME) BATSWING & SLIT UNION JETS

MARKET

The "MARKET" Jets are essentially for emergency and open-air lighting, burning with a very widespread luminous flame. They are constructed of a brass socket, fitted with brass gauze and incorporate either a Batswing No. 226 or a Slit Union porcelain tip No. 219.

> No. 226 BATSWING Buttress Thread (Taper) 27 T.P.I.

RRAY

No. 219 SLIT UNION Buttress Thread (Taper) 27 T.P.I. The "Regulator" L Jets are similarly constructed to the "MARKET" jets, but are of smaller sizes, with Batswing No. 208 and Slit Union, No. 209, porcelain jets. In addition to lighting purposes, these jets also find a use in convectors, where luminous flames are required. The brass socket is narrower, than that of the "Special" jets, for which, in many instances, these jets may be substituted.

COLD GAS RATES

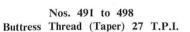
Cubic feet per hour

SPECIAL JETS MARKET JETS REGULATOR L

Jet No. 201, Col. 1; No. 221, Col. 2; No. 202, Col. 3; No. 208 & 209, Col. 4.

			cific vity		0.45	0.45	0.45	0.45	0.50	0.50	0.50	0.50	0.55	0.55	0.55	0.55
			ssure w.g.		1.0	1.5	2.0	2.5	1.0	1.5	2.0	2.5	1.0	1.5	2.0	2.5
(Col.	Col	. Col.	Col	•											
	1	2	3	4				÷								8
			0		1.88	2.30	2.66	2.97	1.79	2.19	2.53	2.83	1.71	2.09	2.41	2.70
	00)			2.33	2.85	3.30	3.68	2.22	2.72	3.14	3.51	2.12	2.59	2.99	3.34
	0	1	1	00	2.78	3.40	3.93	4.39	2.64	3.24	3.74	4.18	2.52	3.09	3.56	3.98
	1				3.22	3.94	4.54	5.09	3.07	3.75	4.34	4.85	2.92	3.58	4.13	4.62
	2	2	2	0	3.67	4.49	5.19	5.80	3.49	4.28	4.94	5.52	3.33	4.08	4.71	5.26
	3	3	3	1	4.56	5.58	6.45	7.21	4.34	5.31	6.14	6.86	4.14	5.07	5.85	6.54
	4	4	4	2	5.43	6.66	7.69	8.59	5.17	6.34	7.32	8.18	4.93	6.04	6.98	7.80
	5	5	5	3	6.30	7.71	8.91	9.96	6.00	7.34	8.84	9.48	5.72	7.00	8.08	9.04
	6	6		4	7.15	8.76	10.1	11.3	6.81	8.34	9.62	10.8	6.49	7.95	9.18	10.3
			6		7.57	9.27	10.7	12.0	7.11	8.83	10.2	11.4	6.87	8.42	9.72	10.9
	7			5	7.99	9.78	11.3	12.6	7.61	9.31	10.8	12.0	7.25	8.88	10.3	11.5
		7			8.30	10.3	11.9	13.3	7.90	9.80	11.3	12.6	7.63	9.34	10.8	12.1
	8		7	6	8.82	10.8	12.5	13.9	8.39	10.3	11.9	13.3	8.00	9.80	11.3	12.6
	9	8		7	9.66	11.8	13.7	15.3	9.20	11.3	13.0	14.5	8.77	10.7	12.4	13.9
			8		10.1	12.3	14.3	15.9	9.60	11.7	13.6	15.2	9.15	11.2	12.9	14.5
				8	10.5	12.9	14.9	16.6	10.0	12.2	14.1	15.8	9.53	11.7	13.5	15.1
		9			10.9	13.4	15.4	17.3	10.4	12.7	14.7	16.4	9.92	12.1	14.0	15.7
			9		11.3	13.9	16.0	17.9	10.8	13.2	15.3	17.1	10.3	12.6	14.6	16.3
			KET			÷										
		1AR 219	KET 226													
	2	10	220		11.8	14.4	16.6	18.6	11.2	13.7	15.8	17.7	10.7	13.1	15.1	16.9
		11	10		13.0	15.9	18·4	20.6	12.4	15.2	17.5	19.6	11.8	14.5	16.7	18.7
																20.5
		11	11		13·0 14·3	17.5	20.2	20·0 22·5	12·4 13·6	13·2 16·6	17·3 19·2	19·0 21·5	12.9	14·3 15·8	18·3	

SECTION III


CYLINDRICAL JETS SIDE HOLE

The "Side Hole" jets may consist of brass sockets with porcelain tips, as Nos. 491–498 and No. 188, or be wholly constructed of porcelain, Nos. 531–538.

Jets Nos. 491–498 and 531–538 are made with from one to eight side holes, giving symmetrically disposed horizontal flames, and No. 188 with eight inclined holes. The former jets have a specified consumption but in the case of the No. 188 jets, the holes are calibrated to the customers' own requirements respecting consumption. They are principally used for food warming cabinets and ovens, but their versatility should suggest many other applications to the designers of gas appliances.

Nos. 531 to 538

 $\frac{1}{8}$ " B.S.P. Thread (Taper)

Porcelain

No. 188 Buttress Thread (Taper) 27 T.P.I.

CLUSTER FLAME No. 254 This jet is peculiar in that it has been designed to admit a small amount of primary air, a series of holes

being pierced in the brass socket, which is fitted with a porcelain gas regulator and porcelain tip, the latter being pierced with a number of holes at small angles from the vertical, to give the cluster of flames from which the jet derives its name.

For certain heating purposes this small degree of primary aeration is found to be advantageous.

No. 516 Patent No. 656378 This new Bray jet is non-atmospheric, consisting of a brass socket with porcelain tip arranged with six holes, providing six pencils of flame as shown in the illustration.

This jet is made to customers' requirements with respect to consumption. An extensive range of applications in both domestic and industrial fields includes geysers, storage and instantaneous water heaters, canteen apparatus and gas-fired boilers, etc.

Table 9

No. 254 Buttress Thread (Taper) 27 T.P.I.

COLD GAS RATES

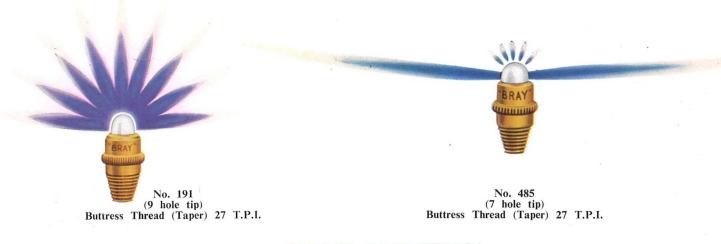
Cubic feet per hour

No. 516 Patent No. 656378 Buttress Thread (Taper) 27 T.P I.

SIDE HOLE JETS CLUSTER FLAME JETS

Specific Gravity 0.450.500.500.500.500.550.550.550.550.450.450.45Pressure ins. w.g. 1.01.5 2.02.5 1.01.52.02.51.01.52.02.5JET No. SH C1 No. 254 2.7035 1.882.302.662.97 1.792.192.53 2.831.712.092.411 2.783.403.93 4.39 2.64 3.23 3.74 4.182.52 3.09 3.56 3.98 41 4.08 4.715.26 2 5.19 5.803.494.945.523.33 45 3.67 4.494.287.21 4.345.075.85 6.54 50 4.565.586.45 5.31 6.14 6.86 4.147.80 3 8.59 5.17 7.32 8.18 4.936.04 6.98 56 5.43 7.69 6.34 6.66 8.88 10.311.5 4 7.99 9.78 7.61 9.3110.812.0 7.25 11.312.65 9.66 11.813.715.39.2011.313.014.58.77 10.712.4 13.9 13.5 15.16 10.512.914.9 16.6 10.012.214.115.8 9.5311.717.7 $15 \cdot 1$ 16.9 10.713.17 11.814.416.6 18.611.213.715.815.9 17.5 18.78 13.0 18.4 12.4 15.2 19.6 11.814.516.720.6

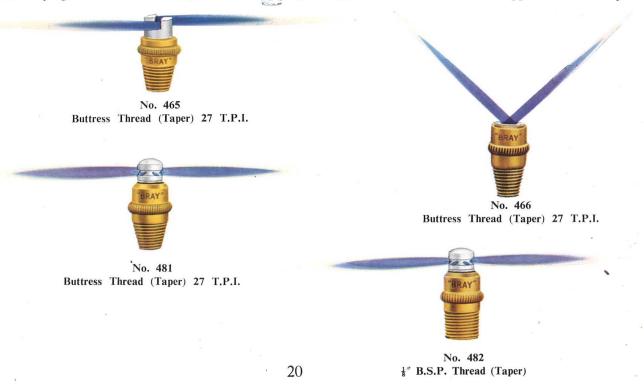
SECTION III


CYLINDRICAL JETS MULTI-FLAME

The Multi-flame jets are constructed of brass sockets with buttress taper threads, and porcelain tips which have a series of cylindrical holes in alignment, but arranged at angles to give a series of radial flames.

In the No. 191 jet there are nine holes giving a similar number of flames of equal size, but in the No. 485 jet, the two "bottom" side holes are of large diameter, while five small holes are arranged across the top of the tip.

These burners are chiefly used for gas fires and convector heaters.



CROSS LIGHTING

These jets, as the name implies, are so designed that when placed in line at some distance apart, they will light up one from the other. They are constructed with brass sockets (No. 466 also incorporates a brass gauze).

No. 465 gives a pair of horizontal pencil flames and No. 466 a pair of inclined flames, each at 45° from the horizontal. The Nos. 481 and 482 jets are arranged with a series of side holes, two opposite holes being of large diameter, while the others are small.

Clothes drying cabinets and hot cupboards are among the appliances which have been supplied with these jets.

Approximate Hot Gas Rates and Flame Lengths of MULTI-FLAME Jets

	ł	HOT GA	S RATES					FLAME	Lengths			
Pressure	1.0″	1.5″	2.0"	2.5"	1.0″	Cat N 1.5″	o. 191 2.0″	2.5"	1.0″	Cat. 1 1.5″	No. 485 2.0″	2.5"
Jet Size												
3	2.2	3.0	3.6	4.2	1.2	1.5	1.7	2.0	4.4	5.5	6.5	7.2
4	2.9	4.0	4.8	5.6	1.5	1.8	2.2	2.6	5.2	6.5	7.7	8.6
5	3.7	5.0	6.0	7.0	1.9	2.2	2.7	3.1	6.1	7.5	8.9	10.0
6	4.5	6.0	7.2	8.4	2.2	2.6	3.1	3.6	6.9	8.5	10.1	11.4
. 7	5.3	7.0	8.4	9.8	2.5	3.0	3.6	4.1	7.8	9.5	11.3	12.9
8	6.1	8.0	9.6	11.1	2.8	3.4	4.0	4.6	8.7	10.5	12.4	14.2
9	6.9	9.0	10.8	12.4	3.1	3.8	4.5	5.2	9.5	11.5	13.6	15.7
10	7.7	10.0	12.0	13.7	3.4	4.2	5.0	5.7	10.4	12.5	14.8	17.1
11	8.5	11.0	13.2	14.0	3.7	4.6	5.4	6.2	11.2	13.5	16.0	
12	9.3	12.0	14.4	15.2	4.0	5.0	5.9	6.8	12.1	14.5	17.2	

(Flame lengths expressed as the distance in inches between the yellow tips of the two lowest flames)

Table 11

Approximate Hot Gas Rates and Flame Lengths of CROSS LIGHTING Jets Cat. Nos. 465, 481 and 482

	`	•							1			
		Нот С	GAS RAT	ES		Cim	No. 465		LENGTHS	Nos	401 40	
Pressure	1.0″	1.5"	2.0"	2.5"	1.0″	1.5″	No. 465 2.0″	2.5"	1.0"	1.5''	481, 48 2.0″	2.5"
Jet Size												
1	0.8	1.0	1.2	1.3	1.7	2.1	2.5	2.9	1.6	2.0	2.3	2.6
2	1.6	2.0	2.3	2.7	3.2	3.9	4.6	5.2	3.0	3.7	4.3	5.0
3	2.4	3.0	3.5	4.0	4.8	5.8	6.8	7.6	4.5	5.5	6.4	7.5
4	3.2	4.0	4.7	5.2	6.3	7.6	8.8	9.8	5.9	7.2	8.4	9.9
5	4.1	5.0	5.8	6.6	7.8	9.4	10.9	12.2	7.3	9.0	10.4	
6	4.9	6.0	7.0	7.9	9.4	Turbule	ent flame	es	8.7	Turb	ulent flan	mes

(Flame lengths expressed as the distance in inches between the yellow tips of the flames)

Table 12

Approximate Hot Gas Rates and Flame Lengths of CROSS LIGHTING Jets Cat. No. 466

(Flame Lengths expressed as (1) distance in inches from flame port to yellow tip of one flame (2) distance in inches between the yellow tips of the two flames)

No 466 JE7	ГS											
		HOT GA	S RATES	5				FLAME L	ENGTHS			
							gths fro to flame	om	Flar	ne Leng etween f		
Pressure	1.0"	1.5"	2.0"	2.5"	1.0"	1.5″	2.0"	2.5"	1.0″	1.5"	2.0"	. 2.5"
Jet Size												
1	0.8	1.0	1.2	1.3	0.9	1.0	1.2	1.3	1.4	1.8	2.1	2.4
2	1.6	2.0	2.3	2.7	1.7	2.1	2.4	2.7	2.5	3.2	3.6	4.2
3	2.4	3.0	3.5	4.0	2.5	3.1	3.5	4.1	3.6	4.5	5.2	5.9
4	3.2	4.0	4.7	5.2	3.3	4.0	4.7	5.4	4.6	5.7	6.7	7.6
5	4.1	5.0	5.8	6.6	4.1	4.9	5.9	6.7	5.7	7.0	8.2	9.2
6	4.9	6.0	7.0	7.9	4.9	5.9	7.1	8.1	6.9	8.3	9.7	11.0

SECTION III

CYLINDRICAL JETS

The non-atmospheric cylindrical jets have a central hole in the porcelain tip. A jet Cat. No. 241 is also available, with a hexagonal brass socket. These jets give a single "ratstail" flame, and are in use for pilot jets and other heating purposes.

No. 213 Buttress Thread (Taper) 27 T.P.I.

³/₁₆ dia. 36 T.P.I.

No. 467 ^{1"} B.S.P. Thread (Taper)

COLD GAS RATES

Cubic feet per hour

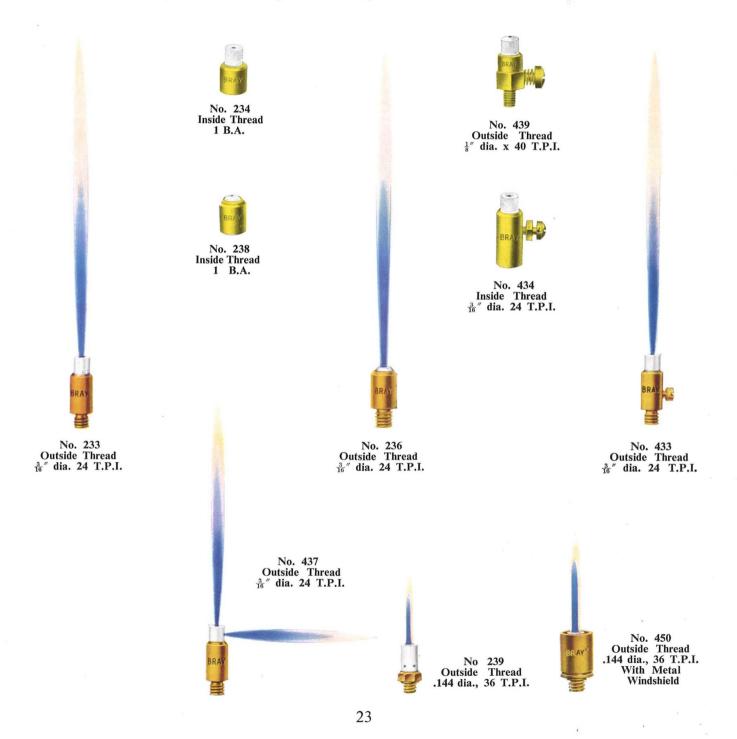
CYLINDRICAL JETS Atmospheric

Two types of cylindrical jets, incorporating small holes in the brass sockets to allow for a small amount of primary air are also supplied. The principal uses of these jets are for domestic water heaters, canteen equipment and gas-fired boilers, etc.

No. 237 Outside Thread 2 B.A.

No. 242 Outside Thread $\frac{3}{16}^{"}$ dia. 36 T.P.I.

Table 13


PILOT JETS Specific Gravity 0.450.450.450.450.500.500.500.500.55 0.550.550.55. . . Pressure 1.01.5 2.0ins. w.g. 2.5 1.01.5 2.02.5 $1 \cdot 0$ 2.0... 1.5 2.5 Jet Nos. Cubic feet per hour Cyl. Pil. 00 00 0.250.31 0.36 0.400.240.290.340.38 0.230.280.320.360.51 0.76 0 0 0.620.720.790.490.59 0.67 0.460.56 0.65 0.73 0.97 1 1 1.191.381.540.93 1.141.311.470.881.251.081.402 11 1.43 1.75 2.022.261.36 1.92 1.662.151.301.591.832.053 2 1.882.302.662.97 1.792.192.532.831.712.092.702.414 2.33 2.863.303.69 2.722.22 3.143.512.12 2.592.99 3.35 5 3 2.78 3.40 3.93 4.39 2.643.24 3.74 2.524.183.09 3.56 3.98 6 3.22 3.94 4.545.09 3.07 3.75 4.342.92 4.85 3.584.134.624 3.67 4.49 5.19 5.803.49 4.284.94 5.52 3.33 4.084.715.26

CYLINDRICAL JETS

CYLINDRICAL JETS PILOT

Ten types of pilot jet are available, suitable for pilot lights in all types of gas appliances. These include the four simple types, Nos. 234 and 238, Nos. 233 and 236, the jet No. 437 with two flames, vertical and horizontal, made to customers' requirements with respect to consumption and length of flames, and three jets with adjustment screws, fitted with either retaining spring or lock-nut as desired, including No. 439, No. 434, and No. 433. Two atmospheric pilot jets are also supplied, one, No. 239 without, and one, No. 450, with metal windshield. These two jets are also made to customers' requirements with respect to consumption.

Tab lengthat museum

Classification of BRAY JETS ACCORDING TO JET CONSTANTS

0

ĥ									
CI	Cluster No. 254	35	41 45	50	56				
Pi	Pilot	$22\frac{1}{2}$	ω 4						
Mk	Market 226							C F	11
Mk	Market 219							10	1
Sp	Special 202	0	1 2	3	5 4	6 7	8	6	
Sp	Special 221		7 1	3	5 4	6	8 0		
Sp	Special 201	00	010	3	5 4	6 7 8	6		
Cy	Cylindrical	0-0-0-0-4	5						
Sh	Side Hole		7		3	4	5 6	۲ v	0
RI	Regulator L		00 0	1	3 5	6 5 4	8		
Rh	Regulator H	000	0 1	2	6 4	5 6 6			
I	Industrial	000000000000000000000000000000000000000	0 161	$\mathcal{O}_{\frac{1}{2}}^{\frac{1}{2}}$	$2^{-1} \alpha 3^{-1} \alpha 3^{-1} \alpha 5^{-1} \alpha 5$	5 6 7	8 6	10	
G	Geyser	000000000000000000000000000000000000000	0 1	5	ε 4	5 6 7	8 6		
		:::::	::::	: :	:::::	. : : : : :	:;:::	::::	: :::
	ants	:::::	:::	::	:::::	:::::	:::::	::::	: :::
	Jet Constants		$\infty \cos_{\frac{1}{2}} 4$	$5\frac{4}{2}$	$\begin{array}{c}5\\6\\2\\2\\2\\2\\2\end{array}$	$\begin{array}{c}8\\8\\9\\9\\10\end{array}$	$\begin{array}{c} 10\frac{1}{2}\\ 11\\ 12\\ 12\\ 12\\ 2\\ 12\\ 2\\ 2\end{array}$	$13 \frac{13}{22}$	$15\frac{1}{2}$ $16\frac{1}{2}$ $16\frac{1}{2}$

1

Heat Inputs of Bray Jets in B.Th.U. Per Hour

Manufacturers of gas appliances in the past have used the calorific value of gas as a basis of jet selection. For example, an appliance consuming 30,000 B.Th.U. per hour might be fitted with ten jets, each passing 3,000 B.Th.U. per hour. The size of the jet would depend upon the calorific value. Thus for a calorific value of 400, a jet to pass 3,000/400=7.5 cubic feet per hour would be required. For 450 gas, the jet would be required to pass 6.7 cubic feet per hour, for 500 gas, 6.0 cubic feet per hour, and for 550 gas, 5.5 cubic feet per hour.

Since the heat input for a given jet and with a given gas pressure varies according to the calorific value divided by the square root of the specific gravity of the gas, a more rational method would be to calibrate the jets according to this factor, which is termed the Wobbe Number. There is every indication that this method will be adopted in the near future, ranges of Wobbe Numbers, corresponding to defined calorific value ranges, with approximate specific gravities being chosen, and the mean Wobbe Number for each range being used for calculating the jet size.

We have therefore included a set of Tables for Bray Jets, in which heat inputs in B.Th.U. per hour have been calculated for various gas pressures and for typical Wobbe Numbers. These are given for all jets, with the exception of Miniature jets, in Tables 15 and 16, and for Miniature Jets in Table 17.

Example. A bar burner is required to pass 30,000 B.Th.U. per hour, when hot, or, it having been found by experience that the consumption reduction upon warming-up, is 15%, 34,500 B.Th.U. per hour cold gas rate. It will incorporate eight burners, so that each must pass 4,300 B.Th.U. per hour. The Wobbe Number of the gas is 670 equivalent to gas of 475 C.V. and 0.50 specific gravity. The gas pressure will be 1.5 inches water gauge.

From Table 15, 4,410 B.Th.U. per hour is the heat input of a jet with jet constant 9, when the operating pressure is 1.5 ins. w.g., and the Wobbe Number of the gas 670. From Table 14 it is seen that the No. 6 size of Geyser or Industrial Jet has a jet constant of 9, and this size would be selected for the burner bar.

				Numbe	rs: B.Tl	h.U. per	hour			
Woł	obe Numb	ber	730	730	730	730	670	670	670	670
Gas	Pressure		1.0"	1.5″	2.0"	2.5"	$1 \cdot 0''$	1.5″	2.0"	2.5"
Jet C	Constants	see Tab	le 14						÷	
	$\frac{1}{4}$		120	150	170	200	110	140	160	180
	$\frac{1}{2}$		250	300	350	390	230	280	320	360
	1		480	590	680	760	440	540	620	690
	$1\frac{1}{2}$		700	860	990	1110	640	790	910	1020
	2		920	1130	1310	1460	850	1040	1200	1340
	$2\frac{1}{2}$		1150	1400	1620	1810	1050	1290	1490	1560
	3		1360	1670	1930	2160	1250	1530	1770	1980
	$3\frac{1}{2}$		1580	1940	2240	2500	1450	1780	2050	2300
	3 ₂ 4		1800	2210	2550	2850	1650	2030	2340	2620
	$\frac{1}{4\frac{1}{2}}$		2020	2480	2860	3200	1860	2030	2620	2930
	42	•••	2020	2400	2000	5200	1000	2270	2020	2950
	5		2240	2740	3170	3540	2060	2520	2910	3250
	$5\frac{1}{2}$		2450	3010	3470	3880	2250	2760	3190	3560
	6		2670	3270	3780	4220	2450	3000	3470	3880
	$6\frac{1}{2}$		2880	3530	4080	4560	2640	3240	3740	4180
	7		3090	3790	4380	4890	2840	3480	4020	4490
	$7\frac{1}{2}$		3300	4050	4670	5220	3030	3710	4290	4790
	8		3510	4300	4970	5560	3220	3950	4560	5100
	$8\frac{1}{2}$		3720	4560	5260	5880	3410	4180	4830	5400
	9		3930	4810	5550	6210	3600	4410	5100	5700
	$9\frac{1}{2}$	···· ···	4130	5060	5840	6530	3790	4640	5360	5990
	10	··· [*]	4330	5310	6130	6850	3980	4870	5740	6290
	$10\frac{1}{2}$		4540	5560	6420	7180	4170	5100	5890	6590
	11		4750	5820	6710	7510	4360	5340	6160	6890
	$11\frac{1}{2}$	•••	4950	6070	7010	7830	4550	5570	6430	7190
	12		5160	6320	7300	8160	4740	5800	6700	7490
	$12\frac{1}{2}$		5370	6570	7590	8490	4930	6030	6970	7790
	13		5570	6830	7880	8810	5020	6270	7240	8090
	$13\frac{1}{2}$		5780	7080	8170	9140	5310	6350	7500	8390
	14		5980	7330	8460	9460	5490	6730	7770	8690
	$14\frac{1}{2}$		6190	7580	8750	9790	5680	6960	8030	8980
	15		6390	7830	9040	10110	5870	7190	8300	9280
	$15\frac{1}{2}$		6600	8080	9330	10430	6060	7420	8560	9570
	16		6800	8330	9620	10750	6240	7650	8830	9870
	$16\frac{1}{2}$		7000	8580	9910	11070	6430	7870	9090	10160

Heat Inputs of Jets at various pressures and with gases of different Wobbe Numbers: B.Th.U. per hour

Table 16

Wobbe Num Gas Pressure		615 1·0″	615 1·5″	615 2·0″	615 2·5″	560 1 ·0″	560 1 · 5″	560 2·0″	560 2·5″
Jet Constant	s See Ta	ble 14							
$\frac{1}{4}$		100	130	150	170	90	120	130	150
$\frac{1}{2}$		210	260	300	330	190	230	270	300
1		410	500	570	640	370	450	520	580
$1\frac{1}{2}$		590	720	840	930	540	660	760	850
2		780	960	1100	1240	710	870	1000	1120
$2.\frac{1}{2}$		970	1180	1270	1530	880	1080	1240	1390
3		1150	1410	1630	1820	1050	1280	1480	1660
$3\frac{1}{2}$		1330	1630	1890	2110	1210	1490	1720	1920
4		1520	1860	2150	2400	1380	1690	1950	2190
$4\frac{1}{2}$		1700	2090	2410	2690	1550	1900	2190	2450
5		1890	2310	2670	2990	1720	2100	2430	2720
$5\frac{1}{2}$		2070	2530	2920	3270	1880	2310	2660	2980
6		2250	2760	3180	3560	2050	2510	2900	3240
$6\frac{1}{2}$		2430	2980	3440	3840	2210	2710	3130	3500
7		2610	3190	3690	4120	2370	2910	3360	3750
$7\frac{1}{2}$		2780	3400	3930	4400	2530	3100	3583	4010
8		2960	3620	4180	4680	2700	3300	3810	4260
$8\frac{1}{2}$	• • •	3140	3840	4440	4960	2850	3490	4040	4510
9		3310	4050	4680	5230	3010	3690	4260	4760
$9\frac{1}{2}$		3480	4260	4920	5500	3170	3880	4480	5010
10		3650	4470	5160	5770	3320	4070	4700	5260
$10\frac{1}{2}$	· · ·	3830	4680	5410	6050	3480	4270	4930	5510
11		4000	4900	5650	6320	3640	4460	5150	5760
$11\frac{1}{2}$		4180	5120	5910	6610	3800	4650	5380	6010
12	•••	4350	5320	6150	6880	3960	4850	5600	6260
$12\frac{1}{2}$		4520	5540	6300	7150	4120	5040	5820	6511
13		4700	5750	6650	7430	4280	5240	6050	6760
$13\frac{1}{2}$		4870	5960	6890	7700	4430	5430	6270	7010
14		5040	6180	7130	7970	4590	5620	6490	7260
$14\frac{1}{2}$		5220	6390	7380	8260	4750	5820	6720	7510
15		5390	6600	7620	8520	4910	6010	6940	7760
$15\frac{1}{2}$	•••	5560	6810	7860	8790	5060	6200	7160	8000
16		5730	7020	8110	9060	5220	6390	7380	8250
$16\frac{1}{2}$		5900	7230	8350	9340	5370	6580	7600	8500

Heat Inputs of Jets at various pressures and with gases of different Wobbe Numbers: B.Th.U. per hour

Heat Inputs of Jets at various pressures and with gases of different Wobbe bns serusser Repairs Vs. Jag. et al. (1971) bright for studul the serus of the serus and with compare the serus and the ser

Wobbe Nun	nber	730	730	730	730	670	670	670	670
Gas Pressure	e	1.0"	1.5"	2.0"	2.5"	1.0"	1.5″	2.0"	2.5"
Code Letter								-	
Z		120	150	170	200	110	140	160	180
Υ		240	300	340	380	220	270	310	350
Х		360	440	510	570	320	400	460	520
W		470	580	670	740	430	530	610	680
V		580	710	820	920	530	650	750	840
U		690	850	980	1090	630	780	900	1000
Т		800	980	1130	1270	740	900	1040	1160
S		900	1110	1290	1440	840	1020	1180	1320
R		1020	1250	1440	1610	940	1150	1320	1480
Q	•••	1130	1380	1600	1790	1040	1270	1470	1640
Р		1240	1520	1750	1960	1140	1390	1610	1800
Ν		1350	1650	1910	2130	1240	1510	1750	1960
J		1780	2180	2520	2820	1640	2000	2320	2590
E	···· `	2210	2710	3130	3580	2030	2490	2880	3220
Wobbe Nur	I	(15	(15	(15	(15	5(0	5(0	5(0)	5(0)
wodde inur	nber	615 1·0″	615 1·5″	615 2·0″	615 2·5″	560 1 ·0″	560 1.5″	560 2·0″	560 2·5″
	2	1.0	1.3	2.0	2.5	1.0	1.3	2.0	
	e					0 a			23
Gas Pressure	2					θ.,	×		2.5
Gas Pressure		100	130	150	170	90	120	130	
Gas Pressure Code Letter		100 200	130 250	150 290	170 320	90 190	120 230		150
Gas Pressure Code Letter Z								130	150 290
Gas Pressure Code Letter Z Y		200	250	290	320	190	230	130 260	150 290 430
Gas Pressure Code Letter Z Y X	··; ···	200 300	250 370	290 430	320 480	190 270	230 340	130 260 390	150 290 430 570
Gas Pressure Code Letter Z Y X W	··; ··· ···	200 300 390	250 370 480	290 430 560	320 480 620	190 270 360	230 340 440	130 260 390 510	150 290 430 570 710
Gas Pressure Code Letter Z Y X W V U T	··; ··· ···	200 300 390 490	250 370 480 600	290 430 560 700	320 480 620 780	190 270 360 450	230 340 440 550	130 260 390 510 630	150 290 430 570 710 840
Gas Pressure Code Letter Z Y X W V U	··· ··· ··· ···	200 300 390 490 580	250 370 480 600 720	290 430 560 700 830	320 480 620 780 920	190 270 360 450 530	230 340 440 550 650	130 260 390 510 630 750	150 290 430 570 710 840 970
Gas Pressure Code Letter Z Y X W V U T	···; ··· ··· ···	200 300 390 490 580 680	250 370 480 600 720 830	290 430 560 700 830 960	320 480 620 780 920 1070	190 270 360 450 530 610	230 340 440 550 650 750	130 260 390 510 630 750 870	150 290 430 570 710 840 970 1100
Gas Pressure Code Letter Z Y X W V U T S	··· ··· ···	200 300 390 490 580 680 770	250 370 480 600 720 830 940	290 430 560 700 830 960 1090	320 480 620 780 920 1070 1220	190 270 360 450 530 610 700	230 340 440 550 650 750 860	130 260 390 510 630 750 870 990	150 290 430 570 710 840 970 1100 1240
Gas Pressure Code Letter Z Y X W V U T S R Q P	··· ··· ···	200 300 390 490 580 680 770 860	250 370 480 600 720 830 940 1050	290 430 560 700 830 960 1090 1220 1350 1480	320 480 620 780 920 1070 1220 1360	190 270 360 450 530 610 700 780	230 340 440 550 650 750 860 960	130 260 390 510 630 750 870 990 1110	150 290 430 570 710 840 970 1100
Gas Pressure Code Letter Z Y X W V U T S R Q	···· ··· ··· ···	200 300 390 490 580 680 770 860 950	250 370 480 600 720 830 940 1050 1170	290 430 560 700 830 960 1090 1220 1350 1480 1610	320 480 620 780 920 1070 1220 1360 1570	190 270 360 450 530 610 700 780 870	230 340 440 550 650 750 860 960 1060	130 260 390 510 630 750 870 990 1110 1230	150 290 430 570 710 840 970 1100 1240 1370
Gas Pressure Code Letter Z Y X W V U T S R Q P	··· ··· ··· ···	200 300 390 490 580 680 770 860 950	250 370 480 600 720 830 940 1050 1170 1280	290 430 560 700 830 960 1090 1220 1350 1480	320 480 620 780 920 1070 1220 1360 1570 1650	190 270 360 450 530 610 700 780 870 950	230 340 440 550 650 750 860 960 1060 1160	130 260 390 510 630 750 870 990 1110 1230 1340	150 290 430 570 710 840 970 1100 1240 1370

NOTES

COLD GAS RATES: The cold gas rates given in this catalogue have been derived by calculation from the Standard Museum Discharge Rates of the various jets which have been determined experimentally at 1.5 inches w.g. pressure on a gas of 0.5 specific gravity.

Acknowledgment is given to Mr. William J. Gilchrist Davey, B.Sc. for the calculations and nomograms supplied in this connection.

MANUFACTURING TOLERANCES: The tabulated gas rates are subject to tolerances as follows:

No. 1 Geyser (Jet Constant 4) and larger: plus and minus 5%

No. $\frac{1}{2}$ Geyser (Jet Constant $3\frac{1}{2}$) and smaller: plus and minus 10% subject to a minimum of plus and minus 0.15

HOT GAS RATES: These vary widely with particular jet sizes according to the method of application; proximity of jets, type of burner manifold, combustion chamber dimensions, etc. The nominal hot gas rates for burning in free air, given in previous catalogues have therefore been dropped in favour of cold gas rates. It is left to the designer of appliances to determine the percentage of consumption reduction from the cold to the hot rate in his particular appliance, since there is at present no method of relating this quantity to methods of application.

CLEANING THE JETS : Slotted jets should be cleaned by means of a small hard brush (e.g., a tooth brush). The insertion of a metal reamer is likely to damage the sides of the slotted ports and to result in irregular flames. For two hole jets a cleaning needle may be used.

REMOVAL AND REPLACEMENT OF MINIATURE JETS. A special box spanner can be supplied for the removal and replacement of miniature jets. This is slotted near the base for inspection of the slot and to ensure its correct alignment when the jet is screwed into position. It should be remembered that the main axis of the flame is at right angles to the length of the slot. The box spanner is illustrated below.

Special Taps for Bray Jet Threads. Special taps for screwing the housing of miniature jets, $\frac{1}{4}''$ diameter \times 36 T.P.I., for buttress taper threads, 27 T.P.I., and for the standard $\frac{1}{8}''$ B.S.P. thread, as illustrated below, can also be supplied. The use of these taps, which have been designed for Bray jet threads, is recommended, to ensure a gas-tight joint.

PRESSURE DROP. In an installation comprising a large number of jets, there may be a pressure drop due to resistances imposed by the jets.

 Tap used for %"

 Tap used for %"

 Tap used for %"

 Tap used for %"

 B.D.

 Trap used for %"

 B.D.

 Parallel L TAP used for No. 118 Miniature Burners

Useful Tools for fitting BRAY BURNERS

The Flow of Gas Through Service Pipes

Users of Bray jets when confronted with problems concerning the flow of gas through service pipes may find the accompanying nomogram useful. It is based on the Table of discharge through straight horizontal pipes from the British Standard Code of Practice CP 331.103 (1947) General Series, "Gas Installation Pipes", and is a slight extension of the nomogram published by William J. Gilchrist Davey in *The Gas World*, 25th October 1947, to which author and technical journal acknowledgments are made for permission to reproduce.

The Table referred to a differential pressure of 3/10'' w.g., and a specific gravity of the gas of 0.5, compared with air. The nomogram deals with specific gravities from 0.35 to 0.70 and with differential pressures from 0.1 to 2.0'' w.g. It refers to gas pipes of steam weight, the diameter scale being calibrated in actual bore areas of such pipes with nominal diameters from $\frac{1}{8}''$ to 4''.

The nomogram consists of seven scales, two of which are ungraduated. From left to right the scales are as follows—(1) the d scale of pipe diameters, (2) an ungraduated scale, (3) the Q scale of gas rates in cubic feet per hour, (4) the L scale of length of pipe in feet, extending from 5 to 300 feet, (5) the S scale of specific gravities of the gas (air = 1), (6) an ungraduated scale, and (7) the h scale of differential pressures.

To determine the pressure loss when a certain quantity of gas of a given specific gravity passes through a horizontal pipe of given size and length, a straight line is first drawn from the diameter of the pipe on the d scale to the length of pipe on the L scale, to intersect the X scale. A straight line is next drawn from the point of intersection of the X scale through the required quantity of gas on the Q scale, to meet the Y scale. A third line is drawn from the specific gravity of the gas on the S scale through the point of intersection of the Y scale to meet the h scale at a point representing the pressure loss.

The broken lines show the solution of a typical problem. It is required to know the pressure loss resulting from the passage of 1000 cubic feet of gas per hour through a 2" pipe, 70 feet in length, the gas having a specific gravity of 0.50, A straight line is drawn from 2 on the d scale to 70 on the L scale, intersecting the X scale. From the point of intersection of the X scale a second line is drawn through 1000 on the Q scale, to meet the Y scale. Finally, a straight line is drawn from 0.50 on the S scale through the point of intersection of the Y scale to meet the h scale at the point 0.3 representing a pressure drop of 0.3" water gauge.

Effect of Elbows, Tees and Bends

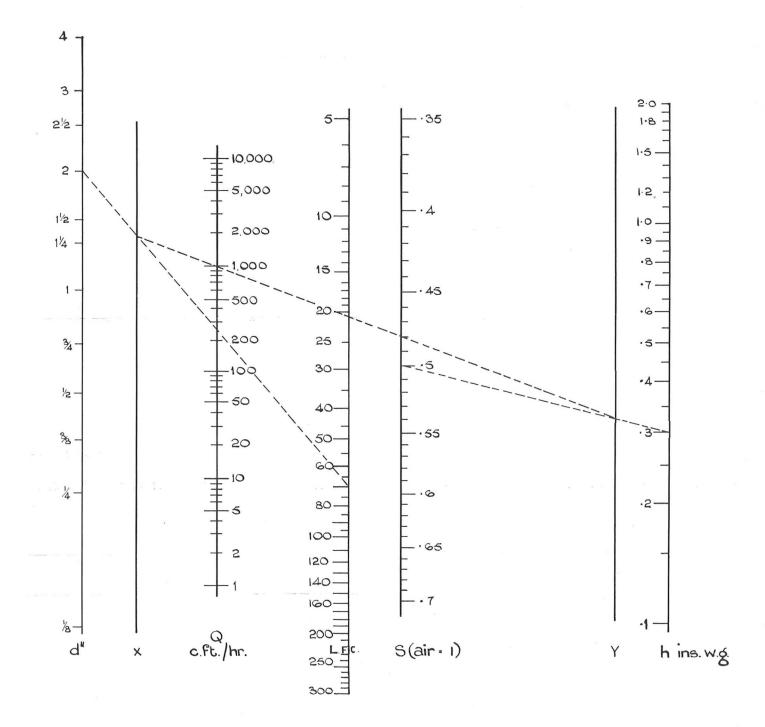
The resistance imposed by elbows, tees and bends may be translated into terms of extra feet to be added to the horizontal length of pipe for the purpose of calculation. The additional length allowances are shown in Table 23. Thus, if a 100 feet length of 2" pipe includes two elbows and one 90° bend, the total length for the purpose of calculation will be $100 + (2 \times 5) + 2 = 112$ feet.

Relative Carrying Capacity of Pipes

The relative carrying capacity of pipes is also given in Table 23. From these figures the data in Table 22 have bee calculated. Supposing, for example, it is required to know the number of $\frac{3}{4}''$ branch pipes that can be taken from a 2" pipe. This is found by dividing the relative carrying capacity of the $\frac{3}{4}''$ pipe into that of the 2" pipe, i.e., 710/60 = approximately 12. This figure is given in Table 22.

	e of					Sizes	of Mai	in Pipes				
bra	anch bes		3″	$2\frac{1}{2}''$	2″	$1\frac{1}{2}''$	$1\frac{1}{4}''$	1″	$\frac{3}{4}''$	$\frac{1}{2}''$	$\frac{3}{4}''$	$\frac{1}{4}''$
$\frac{1}{8}''$			2210	1360	710	352	250	127	60	29	15	7
$rac{1}{4}''$			315	194	101	50	35	18	8	4	2	
. 3///			147	90	47	23	16	8	4	2		
$\frac{1}{2}''$			75	47	24	12	9	4	2			
$\frac{3}{4}''$			37	22	12	6	4	2				
1″			17	10	5	2	2					
$l\frac{1}{4}''$			9	5	3	1						
$l\frac{1}{2}''$		'	6	3	2							
2″		••	3	2								
$2\frac{1}{2}''$			1									

Number of branch pipes that may be taken from a main pipe of larger diameter


Table 23

Relative Carrying Capacities of Pipes and effect of elbows, tees and 90° bends

Size of Pipe in inches (nominal	Relative carrying capacity —	Additional ler for the effect	ngth in feet to be allow t of elbows, tees and	$^{\rm ved}$ 90° bends.
internal diameter)	capacity —	Elbows	Tees	90° bends
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 1 \\ 7 \\ 15 \\ 29 \\ 60 \\ 127 \\ 250 \\ 352 \\ 710 \\ 1360 \\ 2210 \\ \end{array} $	2 2 2 2 2 2 2 3 3 5 6 8	2 2 2 2 2 2 2 3 3 5 6 8	$ \begin{array}{c} 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 2\\ 2\\ 3\end{array} $

Nomogram for Flow of Gas through Service Pipes

2000 _ _ 20000 800_ _5.0 1's 162 11 _16 1500 _ _15000 4.5 15 14 750 4.0 13 1000 10000 3.5 12 11 1-w-800_ 8000 700 _____3.0 10 s'e 600_ 6000 9 82 2.5 500-5000 ×-B 650_ -7'z 400 4000 _7 2.0 6'2 6 _3000 300 5'2 600 5 1.5 200_ 2000 _ 4'z -J⁴ 550 -_ 3'2 1.0 100_ -1000 -N 0.9 80_ 800 Z= P 500_ 0.8 _2/2 60_ _600 0.7 R 50_ _500 ___2 ______2 _0.6 40_ 400 ٠T 450 0.5 JET CONSTANT PRESSURE WOBBE Nº × B.Th. UHR. (SEE PAGE 24 TABLE 14)

Nomogram for Calculation of Heat Inputs

Nomogram for Calculation of Heat Inputs from Slotted Port Jets

The nomogram, page 33, is reproduced by permission from *The Gas World*, 17th November 1951, where it illustrates an article by Wm. J. Gilchrist Davey, on "Heat Input Computation for Non-Aerated Jets" No. VI, in the Series "Further Aspects of Space Heating".

It extends the calculations given in Tables 15-17 on pages 26 to 28, allowing for the calculation of Heat Inputs with gas of Wobbe Number varying by ten units from 450 to 800 at pressures varying by 0.1'' water gauge from 0.5 to 5.0.

The nomogram consists of five vertical scales including one ungraduated scale, the scales reading from left to right, including Wobbe Numbers, the ungraduated X scale, pressures in inches water gauge, heat inputs in British Thermal Units per hour, and Bray Jet sizes, in terms of Jet constants (see page 24, table 14) for the larger slotted port jets, and Code Letters for the Miniature Jets.

To determine the jet size for a given heat input (cold) a straight line is first drawn from the Wobbe Number on the first scale to the pressure on the third scale, intersecting scale X. From the point of intersection of this scale a straight line is drawn through the required heat input to meet the fifth scale at a point representing the jet size.

The unbroken line shows that for a heat input of 3600 B.Th.U. per hour, with gas of Wobbe Number 730 and a gas pressure at jet inlet of 1.0'' water gauge, a jet with Jet Constant 8 is required. Reference to Table 14 shows that this is equivalent to a No. 5 Industrial Jet.

The broken line, on the other hand shows that for a heat input (cold) of 115 B.Th.U. per hour with gas of Wobbe Number 560 and a gas pressure 1.5'' water gauge, a Bray Miniature Jet size Z will be required.

GEO. BRAY & CO. LTD.

LEICESTER PLACE · LEEDS 2

Telegrams 20981 (9 lines)

Telegrams Bray Leeds 2