


Jacques Jumeau

Technology of components used in heating.

Chapter 41

Table of time needed to heat a volume of liquid

Table of time needed to heat a volume of liquid

Note: If the flow is in liters per minute divide by 1000 then multiplicate by 60 the resulting output P. These values must be increased to compensate heat losses and safety margin.

(For estimation only)							
Power supply (KW)	Heated Volume (L)						
	3L (usual volume of a dia 125mm x 300mm tank)		100L	200L	300L	500L	1000L
	°C/h	°C/min*	°C/h	°C/h	°C/h	°C/h	°C/h
1	267	4	8.0	4.0	2.7	1.6	0.8
1.5	400	7	12.0	6.0	4.0	2.4	1.2
2	533	9	16.0	8.0	5.3	3.2	1.6
2.5	667	11	20.0	10.0	6.7	4.0	2.0
3	800	13	24.0	12.0	8.0	4.8	2.4
3.5	933	16	28.0	14.0	9.3	5.6	2.8
4	1067	18	32.0	16.0	10.7	6.4	3.2
4.5	1200	20	36.0	18.0	12.0	7.2	3.6
5	1333	22	40.0	20.0	13.3	8.0	4.0
5.5	1467	24	44.0	22.0	14.7	8.8	4.4
6	1600	27	48.0	24.0	16.0	9.6	4.8
6.5	1733	29	52.0	26.0	17.3	10.4	5.2
7	1867	31	56.0	28.0	18.7	11.2	5.6
8	2133	36	64.0	32.0	21.3	12.8	6.4
9	2400	40	72.0	36.0	24.0	14.4	7.2

Temperature rise in °C per hour/ water volume/ power (For estimation only)

* NB: For most of thermal safety devices, the maximum temperature rise they can control without thermal drift is 1°C per minute (60°C/h). Measuring a temperature rise inside a stainless steel pocket or on a stainless steel pipe or tank surface will add a temperature drift in measured values if temperature rise rate is higher than 0.5°C/min.